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A numerical method with four di!erent components is used to simulate the #ow-induced
vibration at the mid-span of a long slender cylinder, simply supported at both ends, and placed
in a uniform cross-#ow. The incompressible laminar #ow, which is assumed to be two-
dimensional, is calculated using a "nite element method and the cylinder motion is analysed by
a two-degree-of-freedom model (or a spring}damper}mass model). The #uid}cylinder interac-
tion is resolved by an iterative time marching method and the calculated time series are
analysed by the ARMA technique. The cases examined include stationary as well as freely
vibrating cylinders in a cross-#ow. In the vibrating cylinder case, resonance and o!-resonance
situations are considered. Comparisons are made with experimental measurements for station-
ary cylinders as well as for a freely vibrating cylinder at o!-resonance. The reduced velocity
examined varies from 3)6 to 9)2, corresponding to a Reynolds number (Re) range of 2000}5000.
At least two di!erent mass ratios and two di!erent reduced damping parameters are investi-
gated. The numerical method is capable of replicating the Strouhal number correctly in the Re
range investigated. A comparison of the calculated cylinder dynamics with measurements tends
to support the results obtained using the present approach. This is true for both stationary and
freely vibrating cylinders over the range of parameters considered. Therefore, the present
numerical approach can be used to analyse #ow-induced vibration problems in the range of
parameters investigated, in spite of the fact that the wake #ow is three-dimensional and
turbulent. ( 2001 Academic Press
1. INTRODUCTION

A LONG SLENDER CYLINDER with simply supported ends vibrating freely as a result of #uid
forcing is one of the most basic and revealing problems in the general case of vortex-induced
blu!-body #uid}structure interaction. Here, the phrase &&simply supported'' means that
there are no displacement and moment at the supports. As vortices are shed from the
cylinder, they induce a periodic lift force at the shedding frequency and a periodic drag force
at twice the shedding frequency. The #uctuating forces cause the cylinder to vibrate at
a frequency equal to that of the shedding frequency. In turn, the motion of the cylinder
a!ects the vortex shedding. The periodic forces play a very signi"cant role when their
frequencies approach the natural frequencies of the di!erent modes of vibration of the
combined #uid}cylinder system. When this happens, the cylinder goes into resonance with
possible disastrous consequences. In general, #uid damping limits the vibration amplitude.
However, the vibration of the cylinder could be so large that it interferes with and controls
the #ow pattern. The altered #ow "eld, in turn, changes the #ow-induced force, and through
a nonlinear process, the vibration of the cylinder could increase still further until a limiting
behaviour has been reached at resonance (Zhou et al. 1999). The numerical modelling of this
problem is quite complicated. It involves #uid}structure interaction, transition from
889}9746/01/060845#22 $35.00/0 ( 2001 Academic Press
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a laminar boundary layer #ow to a turbulent wake #ow, even at a rather modest Reynolds
number (Re), a three-dimensional wake in spite of a uniform and two-dimensional mean
#ow, and structural resonance with vortex shedding.

Computational methods used to simulate the #ow around blu! bodies can be divided
into two broad categories, the grid methods and the grid-free methods. For the grid
methods, such as the direct numerical simulation (Newman & Karniadakis 1997; Evan-
gelinos & Karniadakis 1999; Evangelinos et al. 2000) and the "nite element method (Mittal
& Kumar 1999; Mendes & Branco 1999), the Navier}Stokes equations are solved directly.
For the grid-free methods, such as the discrete vortex (Zhou et al. 1999) and the surface
vorticity method (Lewis 1991; Lam & Chan 1998), the #ow "eld is obtained by solving the
vorticity transport equation and by invoking the Biot}Savart Law. Besides the direct
numerical simulations (DNS), the usual assumption invoked for the other methods is
a two-dimensional laminar #ow.

Zhou et al. (1999) studied an elastic circular cylinder in a two-dimensional cross-#ow
using the discrete vortex method incorporating the vortex-in-cell technique. The value of Re
was kept at 200, similar to that considered by Newman & Karniadakis (1997), and the
cylinder motion is modelled by a spring}damper}mass system. The interactions between
the #uid and the structure were considered by solving the equations governing the #ow "eld
and the structural motions in an iterative way at every time step. Their results show good
agreement with those obtained by Newman & Karniadakis (1997) and that #uid damping is
responsible for a limit-cycle oscillation behaviour even at, or close to, resonance. At
Re"200, the shed vortices are still laminar. Consequently, the wake remains laminar.
Therefore, a laminar formulation is justi"ed. As Re increases, the shed vortices will become
turbulent at Re"400 (Bloor 1964) and the wake will become three-dimensional and will
transit to turbulent at higher Re. When this happens, it is not known whether the laminar
formulation is still applicable.

Even though the discrete vortex method coupled with the vortex-in-cell technique proves
to be quite useful for very low Re, its extension to higher Re is not straightforward.
Furthermore, the method cannot be extended to three-dimensional #ow without a complete
reformulation. Consequently, it serves as a vehicle to seek basic understanding of the
#uid}structure interaction physics of two-dimensional #ow. As an applied tool, it is not that
useful. The surface vorticity method, on the other hand, could be used to calculate #ows at
higher Re (Lewis 1991; Lam & Chan 1998). However, it is not clear whether the three-
dimensional turbulent wake can be replicated by the method. Furthermore, its application
to #ow-induced vibration problems has not been attempted before.

Newman & Karniadakis (1997) conducted a DNS study of the #ow past a freely vibrating
cable using the spectral element method. They eliminated the di$culty of a moving mesh by
attaching the coordinate axes to the cable. Their simulations were carried out for two- as
well as three-dimensional #ows at a fairly low Re, not greater than 200. The three-
dimensional simulations showed a greater Re dependence than the two-dimensional simu-
lations. Their study focused both on the #ow and the hydrodynamic loads induced on the
structure and is one of the "rst studies that deal with the fully coupled problem of
#ow-induced vibrations on blu!-bodies.

Since then, Evangelinos & Karniadakis (1999) and Evangelinos et al. (2000) extended the
DNS method to higher Re using a new class of spectral methods suitable for unstructured
and hybrid grids. Their approach was fully three-dimensional, but was limited to Re"1000
because the cost of simulating at a higher Re becomes quite prohibitive at present. The
emphasis of the Evangelinos & Karniadakis (1999) study was on the wake #ow and their
results showed a three-dimensional turbulent wake in agreement with that observed by
Bloor (1964). On the other hand, Evangelinos et al. (2000) examined the e!ects of the
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three-dimensional turbulent wake on the cylinder response. Unfortunately, they did not
compare their calculations with measurements because reliable measurements of the dy-
namic characteristics of a freely vibrating cylinder at this Re were not available.

The "nite element method of Mittal & Kumar (1999) and Mendes & Branco (1999) was
applied to treat the #ow-induced vibration problem up to Re"500. In their studies,
a laminar formulation was invoked and the question of a transitional/turbulent wake was
not addressed. Again, a comparison of the structural dynamics with measurements was not
presented. However, their calculations managed to reproduce the Strouhal excitation that
was characteristic at this Re range. In spite of this success, it is not known whether the
laminar approach is capable of giving an accurate estimate of the cylinder dynamics at
higher Re, as far as the vibration amplitude, mode shape, etc., are concerned.

Most #ow-induced vibration problems involve three-dimensional behaviour and occur at
very high Re; therefore, there is a real need to develop a numerical method that can treat
these practical problems. Among the numerical methods discussed above, it is clear that the
vortex and the DNS methods could not be easily extended at present to three-dimensional
#ow with high Re. On the other hand, the FEM could easily be extended. The question then
is how to justify the laminar formulation for #ows with high Re. If the numerical method
could correctly predict the dynamic response of the structure so that it could be incorpor-
ated into a structural design code to account for the e!ects of #ow-induced forces, it could
prove as a useful tool for #ow-induced vibration problems. In modelling these problems
numerically, it is important to correctly reproduce the major frequencies of vortex shedding
or the induced forces. The next requirement is to accurately predict the amplitude of
oscillations of the unsteady forces. That way, the structural dynamic response could be
estimated with fair accuracy, and the possibility of replicating resonance behaviour would
be much enhanced. The ability to resolve the wake #ow correctly is, therefore, secondary in
these #ow-induced vibration problems.

In the subcritical Re range, the mean drag is fairly constant and so is the Strouhal number
(Gerrard 1961; Bishop & Hassan 1964; Richter & Naudascher 1976). Furthermore, in this
Re range, if the oncoming #ow is uniform and laminar, Strouhal excitation still dominates
and the cylinder response is Strouhal-like up to Re'105 (So & Savkar 1981). This suggests
that a laminar formulation to the #ow-induced vibration problem in this Re range could be
appropriate, as long as the induced force is Strouhal excitation and its major frequency is
identical to the vortex shedding frequency. Another point to note is the assumption of
two-dimensional #ow in most past formulations. How valid this assumption is in the light of
a three-dimensional wake, even at relatively low Re (Bloor 1964; Evangelinos & Kar-
niadakis 1999), needs to be examined. If a two-degree-of-freedom model (2-dof) is invoked
for the cylinder dynamics, then the assumption of two-dimensional #ow is consistent with
the 2-dof model. On the other hand, a three-dimensional #ow model has to be assumed if
the 2-dof model is relaxed in favor of a beam model.

Up to now, an evaluation of the "nite element method (FEM) for the calculation of this
relatively simple #ow-induced vibration problem at Re'500 has not been attempted. The
present study proposes to examine the viability of an FEM, incorporating mesh remapping
to accommodate the moving cylinder boundary, on the calculation of a two-dimensional
#ow-induced vibration problem at subcritical Re that spans the resonance and the o!-
resonance condition. It is important to resolve the moving boundary correctly if the
#ow-induced forces and their subsequent actions on the cylinder are to be calculated with
accuracy. A two-dimensional laminar #ow and a 2-dof model for the cylinder dynamics are
assumed. The objective is to assess the viability of these assumptions in the treatment of an
experimental #ow-induced vibration problem with a wake #ow that is inherently three-
dimensional and turbulent. Justi"cations for this approach are the Strouhal response of the
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cylinder and the constancy of the Strouhal number in this Re range. It is, therefore, argued
that if these characteristics are reproduced fairly correctly by the FEM with mesh remap-
ping, the cylinder dynamics will also be calculated with fair accuracy. The calculated mean
drag coe$cient, and the cylinder-displacement time series and its spectral characteristics are
thoroughly compared with recent experimental measurements obtained in the Re range of
2000}5000 (So et al. 2000).

2. NUMERICAL FORMULATION

In the numerical formulation of a #ow-induced vibration problem, four components have
to be considered. One component is the #ow calculation, another is the structural dynamics
evaluation, the third is the assessment of #uid}structure interaction and the fourth is the
analysis of the results of the time series thus obtained. In the present study, the FEM with
mesh remapping is used to calculate the #ow "eld, a 2-dof model is assumed for the cylinder
response, an iterative technique is used to resolve the #uid}cylinder interaction and the
ARMA technique is employed to analyse the calculated time series. The various compo-
nents are described below.

2.1. FINITE ELEMENT METHOD (FEM)

2.1.1. ¹he governing equations

There are three parts in the FEM, the solution of the governing #ow equations, the mesh
remapping to account for the cylinder motion and the unsteady force calculations. A sche-
matic view of the problem is shown in Figure 1. A long slender cylinder of diameter D with
"xed ends is placed in a cross-#ow with a free-stream velocity,;

=
. The cylinder has a large

aspect ratio; therefore, the #ow over a major portion of its span can be considered
two-dimensional. Under this assumption, only one unit length of the cylinder is considered,
and therefore a spring}damper}mass system can be used to represent the dynamics of the
cylinder. The computational domain is a 25D]10D rectangular region, the upstream length
is 5D, the downstream length is 20D, and the cylinder is located at the centreline. The
Figure 1. A representation of the "nite element calculation domain.



FREELY VIBRATING CYLINDER IN A CROSS-FLOW 849
incompressible #ow is governed by the laminar Navier}Stokes equations,

$ ' u"0, (1)

Lu
Lq

#u '$u"!$p#
1
Re

+2u, (2)

where Re";
=

D/l is the Reynolds number and l is the #uid kinematic viscosity. In these
equations, x"(x, y) is the two-dimensional Cartesian position vector, u"(u, v) is the
two-dimensional velocity vector, p is the pressure, q is time, all dimensionless. The dimen-
sionless variables are de"ned from the dimensional variables (denoted here by the super-
script *, except time t) by x"x*/D, u"u*/;

=
, p"(p*!p

=
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=
, and q"t;
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formulation of the problem is complete by specifying the boundary conditions as

u"1, (3)

at the upstream far-"eld, domain top boundary and domain bottom boundary,

Lu
Lg

"0, (4)

at the downstream far-"eld, and

u ' n"u
#: ' n, (5)

at the cylinder surface. Here, g denotes the normal direction to the boundary, n is the unit
outward normal vector, ucy is the velocity vector of the cylinder and the subscript cy denotes
the cylinder.

The Navier}Stokes equations are solved using a "nite element method and the nonlinear
coupling terms in the equations are treated separately, at di!erent fractional time steps, by
an operator-splitting time-stepping method. The method is suitable for both steady and
transient problems and can readily be extended to include extra equations describing
additional physical e!ects, such as cylinder motion on the #ow "eld and vice versa (Bristeau
et al. 1987).

Using the superscript m to denote the iteration number, the steps involved in generating
the solution Mhm`1, um`1, pm`1N are as follows:

First fractional step

um`d!um

dDq
!

a
Re

$2um`d#$pm`d" b
Re

$2um!(um '$)um, (6)

$ ' um`d"0. (7)

Second fractional step

um`1~d!um`d
(1!2d)Dq

!

b
Re

$2um`1~d#(um`1~d '$)um`1~d" a
Re

+2um`d!$pm`d . (8)

¹hird fractional step

um`1!um`1~d
d*q

!

a
Re

+2um`1#$pm`1"
b
Re

$2um`1~d!(um`1~d '$ ) um`1~d, (9)

$ ' um`1"0. (10)
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In the above scheme, a, b3(0, 1) and a#b"1, d3(0, 1
3
). The equations at the "rst and

third fractional steps are of the steady quasi-Stokes (QS) problem type, or

a
0
u!

l
1

Re
$2u#d$p"F

1
. (11)

$ ' u"0, (12)

where F
1
is the body force, a

0
"1/Dq and l

1
"ad. The subproblem at the second fractional

step is of the classical nonlinear di!usion}convection problem (NL) type:

a
0
u!

l
2

Re
$2u#(1!2d) (u '$ )u"F

2
, (13)

where F
2

is also a body force and l
2
"b (1!2d). The QS subproblem can be solved by

a preconditioned conjugate gradient method, while the NL subproblem can be refor-
mulated as a least-squares problem and solved by a preconditioned conjugate gradient
method.

The program development for the solution of these equations was carried out in Fasttalk
environment, a computer language developed by CSIRO (Stokes 1994). This is a high-level
language, consisting of a number of commands to allocate memory, to generate the system
matrix for a number of well-known di!erential operators, and to solve the system of
equations. Basic I/O commands are also provided. The actual computation is carried out by
Fast-oTM, another computer language developed by CSIRO. This scheme automatically
carries out the assembly and solving processes. The user is free from the routine tasks of
implementing the basic "nite element blocks; therefore, attention can be concentrated on
the algorithm relevant for the governing equations at hand.

Since the cylinder boundary layer is expected to be thin, a "ne mesh is concentrated near
the cylinder surface. Quadratic triangular elements are used throughout. The number of
panels is 220, the number of nodes is about 63 589, and the number of elements is
numerically determined to be about 31 589, which is adequate to resolve the velocity and
the boundary layers. These numbers are determined by using di!erent meshes, from coarse
to progressively "ner meshes, until the drag coe$cient is mesh-convergent to within
a prescribed tolerance (about 0)5%). The wall shear stress q

w
is determined from the

calculated boundary layer and the skin friction coe$cient, C
f
"2q

w
/o;2

=
, thus obtained is

used to locate the separation angle, h
s
, on the cylinder; h

s
is measured from the front

stagnation point. Separation is de"ned here as the location where C
f

goes to zero.

2.1.2. Mesh remapping

Solving #uid}structure interaction problems generally involves moving computational
domains and dynamic remeshing. With this arrangement, the elastic cylinder is free to
vibrate within the #ow domain. Therefore, a deforming computational mesh is required to
accommodate the arbitrary motion of the elastic cylinder. The cylinder surface is adjusted
according to the motion of the cylinder by means of nodal displacement. At each time step,
the displacement of the cylinder, which is represented by the position vector Z (X/D, >/D), is
calculated. In order to distribute the mesh deformation as uniformly as possible, i.e., to
minimize local mesh deformation, a Laplacian equation of displacement is solved through-
out the computational domain with the cylinder displacement as the boundary condition.
This equation is given by

$2d"0, (14)
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and the boundary conditions are d"0 at the outside boundary and d"Z at the cylinder
wall. The entire computational mesh is adjusted by a Laplacian interpolation, which is
designed to map a mesh smoothly onto a reasonably similar shape, speci"ed by the
displacement of the elastic cylinder. Fast-oTM has built-in facilities that allow this mesh
remapping procedure to be carried out easily.

2.1.3. Flow-induced force calculation

Once the velocity and the pressure "eld have been calculated, the induced force on the
cylinder is determined using the formula,

F (q)"Q A!pn#
1

Re
($u#$uT) ' nB (1) ds. (15)

The integration is performed around the circumference of the cylinder and over one unit
spanwise length. In equation (15), s is the elemental arc length and n is the outward unit
normal of the cylinder. The two-dimensional force vector, F"MF

D
, F

L
N, consists of the

dimensionless unsteady drag and lift force. The corresponding coe$cients are de"ned as
C

D
"2F

D
/o;2

=
D and C

L
"2F

L
/o;2

=
D, respectively.

2.2. CYLINDER RESPONSE

For a long slender cylinder with simply supported ends in a cross-#ow, the motion of the
cylinder is essentially dominated by vibration along the x- and y-direction only. If mode
shape information is not of interest, then the cylinder dynamics can be described by a 2-dof
model. Therefore, it is assumed that the circular cylinder is mounted as a spring}
damper}mass system, which represents the situation at the mid-span of the long slender
cylinder where the vibration amplitude is a maximum. With this approximation, the
cylinder motions are described by the 2-dof dynamic equation,

ZG#
4nf

s
;

r

Z0 #A
2n
;

r
B
2

Z"

C
F

2M*
, (16)

where Z"(X/D)i#(>/D)j, X and > denote the instantaneous positions of the cylinder in
the x- and y-directions, respectively, f

s
is the dimensionless structural damping coe$cient,

M*"m
#:
/(oD2) is the mass ratio, o is the air density, m

#:
is the cylinder mass per unit

length, C
F
"2F/o;2

=
D, is the force coe$cient, ;

r
";

=
/f *
n

D is the reduced velocity and
f *
n

is the natural frequency of the stationary cylinder. This is an appropriate choice of
characteristic frequency because the natural frequency of the stationary cylinder is well
de"ned. The solution yields the vibration displacement and the velocity of the cylinder as
they respond to the #ow-induced forces. Since the #ow-induced force is the forcing function
in equation (16), the incompressible #ow solution is coupled with the cylinder response.
Therefore, the #ow equations and equation (16) have to be solved simultaneously if
#uid}structure interactions are to be adequately resolved at each time step. The numerical
procedure is described in the next section.

2.3. FLUID}STRUCTURE COUPLING

In the FEM approach, the reference frame is "xed at the far-"eld, i.e., the cylinder is free to
vibrate within the calculation domain. At each time step, the #uid #ow is determined using



Figure 2. Flow chart illustrating the numerical calculation and #uid}structure coupling.
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the FEM method. The force on the cylinder is calculated using equation (15). This is then
used as an input to equation (16) and the response of the cylinder is calculated by solving
equation (16) using the Runge}Kutta method. The cylinder is moved according to its
displacement, and the mesh is remapped according to this motion. Then the #ow "eld is
determined again using the new location of the cylinder and its velocity as boundary
conditions. In order to account for the #uid}structure interaction properly within each time
step, an inner iteration loop is used until a stable status is reached (Figure 2). In such
a process, the cylinder motion, the #ow "eld, and the #uid forces are evaluated at the same
time at the end of each time step. The dashed (virtual) line in Figure 2 shows this step in the
numerical computation. The readers are referred to Jadic et al. (1998) for a description of the
process.

2.4. DATA ANALYSIS

The calculated and measured time series are analysed using the autoregressive moving
average (ARMA) technique. Details of the ARMA technique can be found in Mignolet
& Red-Horse (1994) to which interested readers are referred. The use of this technique to
analyse time series derived from #ow-induced vibration problems has been attempted by
Jadic et al. (1998), Zhou et al. (1999) and So et al. (1999), and their results had been
compared with those deduced from the fast Fourier transform method. The method was
found to be able to correctly resolve the spectral characteristics and the e!ective damping of
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the cylinder. Furthermore, ARMA was able to give a more accurate determination of the
major frequencies and their associated damping ratios. Therefore, it is more suitable for
#ow-induced vibration problems (Jadic et al. 1998) and is adopted for the present
analysis.

Only the stationary part of the signal is used for the analysis. In most of the calculations,
stationary behaviour was achieved beyond q"80. Therefore, the chosen period for most
calculations is 1004q4200. However, in some cases, this chosen period is not long
enough and results in fairly large mean values of the lift and transverse displacement.
Ideally, the period should be chosen such that the mean values of the lift and transverse
displacement are less than 1% of their respective root-mean-square values. In the present
study, the period is chosen to yield a mean drag that does not vary by more than 1%.

2.5. VALIDATION AND COMPARISON

The present formulation assumes the cylinder to be in"nitely long; hence the spring}
damper}mass (or 2-dof) model for the cylinder dynamics can be invoked. In addition, the
#ow around the cylinder is assumed to be two-dimensional, thus implying that there is
a perfect correlation along the span of the cylinder. Therefore, vortex shedding is two-
dimensional and this limits the Re range in which the calculations can be carried out and yet
the assumptions still remain valid (Evangelinos & Karniadakis 1999). On the other hand,
according to So & Savkar (1981), Strouhal excitation is still predominant in spite of the fact
that the vortices shed from the cylinder surface and the wake are turbulent. This Strouhal
excitation will persist up to Re'105 if the free-stream turbulence level is extremely low. If
these assumptions were invoked for #ows at higher Re, their validity has to be proven by
a comparison with experimental measurements at these high Re. The objective of the
present study is to attempt a prediction of the cylinder response correctly; therefore, the
ability of the FEM to replicate the Strouhal excitation at these Re is most important.

Among the more suitable experiments that could be used for comparison are those
carried out by So & Savkar (1981), Szepessy & Bearman (1992) and So et al. (2000). So
& Savkar (1981) measured the span-wise averaged force using force cells over the Re range
of &5]104}106, while Szepessy & Bearman (1992) used a spatial pneumatic pressure
average technique to deduce the sectional average force over the Re range of
8]103}1)4]105. On the other hand, So et al. (2000) used a laser vibrometer to measure
mid-span transverse displacement at Re ranging from 800 to (5000. The experiments of
So et al. (2000) were carried out with cylinders having relatively large aspect ratios.
Therefore, a two-dimensional #ow was established over a large portion of the cylinder, even
though the wake is three-dimensional. The experiments of So & Savkar (1981) and Szepessy
& Bearman (1992) were carried out at relatively high Re. In order to gain insight into the
applicability of the FEM under the two-dimensional laminar assumption, this "rst attempt
is carried out with #ows whose Re is less than 5000. Therefore, the following comparison
with experiments will only be made with the data of So et al. (2000).

Validation of the FEM is carried out in three stages; the "rst is to assess the viability of
the FEM for a stationary cylinder, the second is for a freely vibrating cylinder using the
FEM with mesh remapping and the "nal stage is to verify the numerical calculations with
experimental measurements. The calculations of the stationary cylinder in a cross-#ow are
compared with mean measurements reported in the literature (Roshko 1954; Schlichting
1968) in Section 3. The performance of the FEM with mesh remapping for elastic cylinders
over a range of;

r
that spans the resonance case is discussed in Section 4. Finally, a detailed

comparison of the numerical calculations with the measurements of So et al. (2000) for an
o!-resonance case at Re"3340 is given in Section 5.
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3. STATIONARY CYLINDER

The "rst comparison between the FEM results and measurements is carried out for the case
of a stationary cylinder in a cross-#ow. Two cases with Re"800 and 2500, respectively, are
calculated and compared. This choice of Re is intended to cover the sensitive Re range
where the mean C

D
drops slightly from above 1 to just below 1 (Schlichting 1968). The

numerical methods should be able to yield this trend if they are capable of reproducing the
#ow behaviour properly. The comparisons are made with the separation angle (h

s
) predic-

tion, the mean C
D
, CM

D
, the calculated C

D
and C

L
time series and their spectra. The

calculated mean C
L
, CM

L
, is also reported to show the relative error in the numerical

calculations. Strictly speaking, CM
L

should be zero. However, its value depends to a large
extent on the time period chosen for the overall calculation of the mean values.

The ability of the FEM to predict #ow separation on the cylinder is evaluated "rst by
examining the Re"800 case. Experimentally, the measured mean h

s
occurs at about 80 to

(903 from the front stagnation point for the range 1)24]103(Re(4]104 (Zdrav-
kovich 1997). The calculated distribution of C

f
along the surface of the stationary cylinder

at Re"800 is shown in Figure 3. Since the #ow is unsteady, C
f

is also time dependent. The
three distributions shown in Figure 3 are for the situations where C

f
goes to zero at the

minimum, mean and maximum angle, respectively. The point at which C
f
"0 corresponds

to the separation point. Based on this, h
s
thus determined ranges from a minimum of 953 to

a maximum of 1093, and the mean angle is about 100)33. This prediction is consistent with
the values reported in Zdravkovich (1997) for the Re range of 174 to &500 but not for
higher Re. In view of this, it can be said that FEM over-predicts the mean h

s
. The same is

also true for the Re"2500 case, where the calculated h
s
is similar to that reported for the

Re"800 case. It will be shown below that the inability to predict separation correctly does
not a!ect the calculation of the #ow-induced forces and their spectra.
Figure 3. Distribution of the FEM-calculated C
f

along the cylinder surface at Re"800: -----, instantaneous C
f

with max h
s
; **, time averaged C

f
; - ) - ) - ) - ) -, instantaneous C

f
with min h

s
.
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The calculated C
D

and C
L

time series for the Re"800 case is shown in Figure 4. They
show that the induced forces are Strouhal-like with few high frequency components. The
calculated statistics for this case is given in Table 1. In addition to the present results,
the experimental data collected by Roshko (1954) and Schlichting (1968) at about the same
Re are also shown for comparison. The value of CM

D
deduced from the FEM is very close to

the experimental data (Schlichting 1968). This good agreement is fortuitous and is not due
to the accuracy of the FEM. Strictly speaking, a two-dimensional calculation should yield
a CM

D
that is &5% higher than the measurement. Instead, the present result is about 2%

lower (Table 1). Possible reasons for this result are the over-prediction of h
s
, which

contributes incorrectly to a smaller wake, the assumption of laminar shed vortices, and the
assumption of a two-dimensional laminar wake. The root-mean-square drag coe$cient,
C@

D
, varies from &10% to &13% of the root-mean-square lift coe$cient, C@

L
, depending

on the Re. These values seem to be consistent with those reported in the literature (Khalak
& Williamson 1996).

Spectra E
L

and E
D

of C
L

and C
D
, respectively, for the Re"800 case are shown in

Figure 5. Here, E is the ARMA power spectral density, which is de"ned as the square norm
of the system function scaled by the sampling interval and the white noise variance (Marple
1987). The spectral density E is dimensionless, because the equations solved are nondimen-

sional. Spectrum E
L

clearly shows a third harmonic of f *
s
. A di!erence in the normalized

shedding frequency, f *
s
"St*"f *

s
D/;

=
, exists between the numerical calculation and the

experimental data (Roshko 1954). Here, St* is the Strouhal number of the stationary
cylinder. From this point on, the asterisk is used to denote the properties of the stationary

cylinder. The FEM under-predicts f *
s
, and the di!erence is about 5% (Table 1). Besides f *

s
and 3f *

s
shown in Table 1, the major frequency of the drag signal, f *

sD
, is also determined

from its spectrum and listed in the table. It can be seen that, as expected in a Strouhal

excitation, the dominant frequency of the drag signal is twice that of the lift. The fact that f *
sD
Figure 4. The C
L

and C
D

time series at Re"800 for the stationary cylinder.



TABLE 1
Comparison of the FEM calculated characteristics with measurements for a station-

ary cylinder

Re"800 Re"2500

FEM Measurements FEM Measurements

CM
D

1)056 1)08
(Schlichting 1968)

0)9903 0)95
(Schlichting 1968)

C@
D

0)054 * 0)0812 *

CM
L

0)003 * 0)006 *

C@
L

0)651 * 0)6813 *

f *
s

0)2002 0)21 0)2052 0)21
(Roshko 1954) (Roshko 1954)

f*
sD

0)4029 * 0)4104 *

3f*
s

0)6056 * 0)6131 *
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does not show up in the lift spectrum simply says that the coupling between the lift and drag
direction is very weak at Re"800. Together, these results show that the excitation is of the
Strouhal rather than of the bu!eting type.

Comparisons at Re"2500 are also tabulated in Table 1. At this Re, there is a possibility
that the boundary layer on the cylinder surface might become turbulent and this will, in
turn, lead to a turbulent separation. However, the major focus is not on this #ow behaviour,
but rather on the cylinder dynamics, whether it is a Strouhal or a bu!eting response.
According to the study of So & Savkar (1981), Strouhal excitation was observed up to
Re'105, where St* was measured to be 0.21. Therefore, it is safe to say that at Re"2500,
the cylinder response should still be Strouhal-like. In this case too, the predicted CM

D
agrees

with the experimental data, but it is about 5% higher than the reported measurement. The
reason could be that the smaller wake predicted is more representative of the experimental

#ow at Re"2500 than at Re"800. The calculated spectral density clearly shows f *
s

and its

second and third harmonics. As before, the f *
sD

determined from the drag spectrum is given

in Table 1 and it is twice that of f *
s

. In this subcritical Re range, St* is quite constant.

Therefore, essentially there is no di!erence in the calculated f *
s

in these two Re cases.
Finally, it should be pointed out that the calculated CM

L
for the two Re cases is close to

zero, as expected. The value of CM
L

is (1% of C@
L
. This could be due to a numerical

truncation and a possibility that the record length used is not long enough for the cases
examined. Therefore, the error could be improved by taking a longer period or sample
length in the calculation of CM

L
.

The above comparisons show that the FEM is capable of predicting fairly correctly the
vortex shedding frequency and the mean drag on the stationary cylinder in the Re range of
800}2500. This suggests that, as far as these mean properties of the stationary cylinder are
concerned, the assumption of a two-dimensional laminar wake is quite appropriate. At-
tempts to verify the C@

L
and C@

D
calculations were futile because, according to Khalak

& Williamson (1996), the scatter in unsteady lift-force data for the stationary cylinder case
reported in previous studies is of the order of 400%. Some of these discrepancies could be
attributed to the e!ects of a three-dimensional wake #ow (Szepessy & Bearman 1992), while
others could be due to a free-stream turbulence (So & Savkar 1981). The next step is to
assess how well the FEM with mesh remapping can calculate a freely vibrating cylinder in
a cross-#ow.



Figure 5. Comparison of E
L

and E
D

at Re"800 for a stationary cylinder: **, E
L
; - ) - ) -, E

D
.

TABLE 2
Comparison of the FEM calculated statistics for an elastic cylinder

;
r
"3)6

(Re"2000)
;

r
"4)6

(Re"2500)
;

r
"9)2

(Re"5000)

CM
D

1)239 1)256 1)40
C@

D
0)0877 0)054 0)186

CM
L

!0)003 0)008 !0)020
C@

L
0)835 1)004 1)14

>M /D !0)0008 0)004 !0)008
>@/D 0)128 0)258 0)188
XM /D 0)1003 0)1656 0)753
X@/D 0)0046 0)0038 0)0096
fM
n

0)231 0)2127 0)1051
fM
s

0)2122 0)2127 0)2202
f
sD

0)4254 0)4254 0)4354
3fM

s
0)6381 0)6431 0)6557
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4. FREELY VIBRATING CYLINDER

Three cases of a long slender elastic cylinder in a cross-#ow are examined. The reduced
velocities for these cases are selected to be ;

r
"3)6, 4)6 and 9)2, and the corresponding Re

are Re"2000, 2500 and 5000 (Table 2). For all cases, M*"1 and the reduced damping
parameter S

g
"8n2St*2M*f

s
"1 are speci"ed. The three cases are selected to bracket the

resonance case, which occurs at ;
r
"4)6. Two-dimensional unsteady force measurements

at these Re are rather scarce. The measurements of Szepessy & Bearman (1992) were mostly
for cylinders with relatively small aspect ratios; therefore, three-dimensional e!ects rendered
their data not very appropriate for a comparison with two-dimensional calculations. This
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section attempts to assess the ability of the FEM with mesh remapping to resolve the
resonance and o!-resonance behaviour of a freely vibrating cylinder in a cross-#ow. In the
following, the resonance case is discussed "rst because of the relatively strong nonlinear
#uid}structure interaction. Therefore, this case is the most taxing on any numerical
methods. If the numerical method cannot resolve the #uid}structure interaction properly,
its ability to estimate the vibration characteristics of this resonance case will be greatly
diminished.

4.1. RESONANCE CASE (;
r
"4)6)

In order to illustrate the e!ectiveness of the mesh remapping technique, the "nite element
mesh at two di!erent time steps for the resonance case are shown in Figure 6. The "nite
element mesh at a time step when the cylinder has no displacement is shown in Figure 6(a).
Its corresponding mesh at a time step when the cylinder reaches its maximum displacement
is displayed in Figure 6(b). It is obvious that the mesh remapping technique is e!ective in
rede"ning the moving boundary for the #ow calculation.

The time series of C
L

and >/D and their corresponding power spectra are shown in
Figures 7 and 8, respectively. It can be seen that the C

L
and >/D signals track each other

closely and that their spectra yield the same major frequencies. Most important is the
coincidence of the shedding frequency, fM

s
, with the natural frequency of the combined

#uid}cylinder system, fM
n
. These frequencies together with the statistics of the C

L
, C

D
and

>/D signals are tabulated in Table 2. Besides the shedding and natural frequency, the major
frequency of C

D
and the higher harmonics determined from the spectrum of C

L
are also

shown in Table 2 for comparison. It can be seen that f *
sD

is twice that of fM
s
and the only

higher harmonics discernible is the third. These results clearly show that the induced force
and the cylinder response are Strouhal-like.

The calculated CM
D

is about 30% larger than that given by the stationary cylinder at the
same Re, while the C@

D
is &35% smaller (cf. Tables 1 and 2). On the other hand, the C@

L
is

&65% larger. As a result, the C@
L
/C@

D
ratio increases from 8 for the stationary case to about

20 for the resonance case. The e!ect of cylinder vibration on the induced forces is very
signi"cant. This is also re#ected in the y displacement, where>@/D is about 1

4
. In terms of the

major frequencies, the present numerical method is capable of resolving them; at least
demonstrating clearly that, at resonance, fM

s
and fM

n
are identical. Again, the calculated CM

L
is
Figure 6. Computational mesh distribution with and without cylinder displacement for a freely vibrating
cylinder.



Figure 7. The C
L

and > time series at;
r
"4)6 (Re"2500) for a freely vibrating cylinder:**, >/D; - ) - ) -, C

L
.

Figure 8. Comparison of E
L

and E
Y

at ;
r
"4)6 (Re"2500) for a freely vibrating cylinder:**, E

Y
; - ) - ) -, E

L
.
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nonzero and, in this case, it is also (1% of C@
L
. As pointed out in Section 3, numerical

truncation errors and an insu$ciently long record length could give rise to a very small
value for CM

L
.



860 R. M. C. SO E¹ A¸.
4.2. OFF-RESONANCE CASES (;
r
"3)6 AND 9)2)

The C
L

time series of these two cases are shown in Figure 9, the corresponding >/D time
series in Figure 10 and the power spectra of C

L
and >/D for the case;

r
"9)2 are plotted in

Figure 11 for comparison. Statistics of the di!erent signals and the major frequencies
determined from their spectra are tabulated in Table 2 for comparison. From these results,
the following observations can be made. The numerical method is capable of resolving fM

s
and fM

n
and the variation of fM

n
with;

r
. It is obvious that;

r
has a very signi"cant e!ect on fM

n
;

a reduction of more than 50% in fM
n
is noted when;

r
increases from 3)6 to 9)2. However, the

e!ect on fM
s
is minimal. In fact, the noted variation is within the numerical error margin. The

calculated fM
s
for the three cases considered is about the same. This seems to verify the fact

that the Strouhal number does not vary much in this range of Re. The calculated CM
D

also
bears this out because it is approximately the same for the three Re considered.

The correctness of these calculations has to be validated against measurements; other-
wise, the viability of the FEM with mesh remapping cannot be demonstrated. Furthermore,
the assumption of a two-dimensional laminar wake #ow for a freely vibrating cylinder still
needs to be veri"ed. These points are addressed in the next section.

5. COMPARISON WITH MEASUREMENTS

A rather elaborate experiment on the #ow-induced vibration of a long slender cylinder has
been carried out (So et al. 2000). Thus, the #ow over a major portion of the cylinder span is
two-dimensional in spite of the fact that the wake #ow might be three-dimensional. In this
sense, the #ow at mid-span is close to that modelled by the present numerical approach.
Two cases were examined in detail; one was a resonance case while another was an o!-
Figure 9. Comparison of the C
L

time series at ;
r
"3)6 and 9)2 (Re"2000 and 5000) for a freely vibrating

cylinder: **, ;
r
"3)6; - ) - ) - ) - ) -, ;

r
"9)2.



Figure 10. Comparison of the >/D time series at ;
r
"3)6 and 9)2 (Re"2000 and 5000) for a freely vibrating

cylinder: **, ;
r
"3)6; - ) - ) - ) - ) -, ;

r
"9)2.

Figure 11. Comparison of E
L

and E
Y

at;
r
"9)2 (Re"5000) for a freely vibrating cylinder: - ) - ) -, E

L
;**, E

Y
.
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resonance case. In order to verify the ability of the numerical techniques to predict fM
n
and fM

s
,

an attempt is made here to compare the numerical calculations with the o!-resonance case,
where fM

s
and fM

n
are distinctly present in the measured >/D signal (So et al. 2000).
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All experiments were carried out in a suction-type wind tunnel. The length of the square
test section (0)35m]0)35m) was 0)5m. A circular cylinder with D"6mm was mounted in
the mid-plane of the test-section at a location that was 20 cm downstream of the test-section
entrance. This gives an aspect ratio of 58 for the test cylinder, thus justifying it as a long
slender cylinder. The cylinder was mounted to simulate a "xed}"xed end support. Thus, the
cylinder de#ection at the support is essentially zero. This arrangement allows the 2-dof
assumption (or spring}damper}mass system) to be made in the structural dynamics.
Various materials, such as acrylic, bronze, glass and steel, were used to fabricate the cylinder.
The experiments were carried out with particular values speci"ed for ;

r
and M*, and the

calculations were performed using the same;
r
and M*. The;

=
could be varied from a low of

about 2m/s to a high of &26m/s. The corresponding Re varied from 800 to 9000, and M* is
estimated to be 445 for an acrylic cylinder. The free stream turbulence intensity was measured
at 0)5%. A range of ;

r
was investigated, covering situations close to resonance to far away

from resonance. The case where ;
r
"15)0 and Re"3340 was investigated in detail with

measurements made along the span of the cylinder. However, the present comparison is
made with measurements obtained at mid-span only. The reduced damping parameter for
this case is S

g
"8p2St*2M*f

s
"&41. Thus, M*"445 and S

g
"&41 are substantially

di!erent from those speci"ed in Section 4. In addition to comparing the measured>/D and
its statistics, an attempt is also made to compare f

e
, the e!ective damping ratio, which is the

sum of f
s
and f

f
, the #uid damping ratio. That way, the ability of the numerical methods to

yield damping information can also be assessed. The ARMA data analysis technique is used
to determine the damping ratio following the procedure proposed by Zhou et al. (2000). The
calculated and measured statistics are shown in Table 3.

It can be seen that the calculated CM
D

agrees to within 1)3% with the measurement (Table
3). The reasons for the good agreement are similar to those given in the case of the
stationary cylinder. This result is consistent with those reported in Sections 3 and 4 for the
stationary and vibrating cylinders and lends support to the suggestion that the incorrect
prediction of the separation angle does not seriously a!ect the calculation of CM

D
. A com-

parison of the calculated >/D time series of the cylinder with the experimentally measured
time series in the stationary region of the signal is shown in Figure 12. The calculated and
TABLE 3
Comparison of the calculated and measured

statistics at ;
r
"15 and Re"3340

;
r
"15 (Re"3340)

FEM Experiment

CM
D

0)968 0)955
C@

D
0)092 *

CM
L

0)007 *

C@
L

0)710 *

>M /D 0)000006 *

>@/D 0)00050 0)00048
XM /D 0)0062 *

X@/D 0)000039 *

fM
n

0)075 0)075
fM
s

0)212 0)216
f
sD

0)424 *

3fM
s

0)6366 0)6533
f
e

0)0369 0)0314



Figure 12. Comparison of the calculated and measured > time series at ;
r
"15 (Re"3340):**, Measured;

- ) - ) - ) -, FEM.

Figure 13. Comparison of the calculated and measured power spectral density E of >/D at ;
r
"15 (Re"

3340): - ) - ) - ) -, (E
Y
)
m
"ltered; ***, (E

Y
)
c
calculated; -----, (E

Y
)
m

measured.
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the measured signal track each other rather well. The measured >@/D is 0)00048, while the
correspondingly calculated value is 0)00050. This yields an error of about 4%. These
discrepancies could be partially attributed to the neglect of #uid damping in equation (16).
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The calculated spectrum of >/D, (E
Y
)
c
, is compared with the measured spectrum,

(E
Y
)
m
, in Figure 13. The di!erence between (E

Y
)
c
and (E

Y
)
m

at lower frequencies could be
attributed to wind tunnel noise contamination. If (E

Y
)
m

is calculated from a signal that
"lters out the low-frequency content, i.e., passing the measured signal through a high-pass
"lter set at 30 Hz, the agreement between the calculated and measured spectrum at high
frequency is much improved (Figure 13). The agreement in the major frequencies between
the calculation and measurement is excellent, the #uid}structure natural frequencies are
exactly the same, the di!erence in major shedding frequency is about 2%, and even the
di!erence in the third harmonic is only 2)5% (Table 3). At this ;

r
, the cylinder vibrates at

a frequency far away from fM
n
. That is why the fM

s
value thus determined is three times larger

than fM
n
. The coupling between X/D and>/D is very weak. As a result, f

sD
cannot be detected

from the measured>/D signal. The value of f
sD

listed in Table 3 is determined from the drag
signal. This further indicates that the FEM method is capable of resolving #uid}
structure interactions correctly, at least in the prediction of the major frequencies in >/D.
The >/D signal is used to determine the damping ratio. Only the damping ratio associated
with fM

n
is used for the comparison, because this is the frequency where the calculated and

measured signals are in complete agreement (Table 3). The calculated f
e

from the FEM
signal is in fair agreement with the measurement, the error being about 17% (Table 3).

Taken together, all these results show that the FEM with mesh remapping is a viable
method for #ow-induced vibration modelling at the subcritical Re range considered.

6. CONCLUSIONS

In any #ow-induced vibration problem, there are four components to the numerical
calculation. The "rst is #ow analysis, the second is the calculation of the structural
dynamics, the third is the technique used to evaluate the #uid}structure interaction and the
fourth is the data analysis method. This paper makes an attempt to evaluate the viability of
the "nite element method (FEM) with mesh remapping for #ow calculation under the
assumption of two-dimensional and laminar wake #ow in #ow-induced vibration problems.

The vehicle to achieve this is a relatively simple #ow-induced vibration problem, a long
slender cylinder with "xed ends freely vibrating in a cross-#ow. That way, a laminar
two-dimensional approach can be assumed for the #ow. Consistent with this assumption,
a 2-dof model is used to describe the cylinder dynamics. An iterative time marching
technique is used to determine the #uid}cylinder interaction at every time step. Data
analysis is carried out using the ARMA technique. The validation is made in three di!erent
stages; stationary cylinder at two values of Re, vibrating cylinder at three values of
;

r
bracketing the resonance situation, and detailed evaluation against the experimental

measurements for an o!-resonance situation. In all these cases, the Re values were chosen so
that they were within the subcritical range, 800}5000. For the vibrating cases, di!erent
values of M* and S

g
are investigated. Thus, the validation is fairly comprehensive in that it

covers a rather wide range of the parameters of importance in #ow-induced vibration
problems.

The FEM gives an incorrect calculation of the mean separation angle for the stationary
case and the prediction is o! by more than 18%. In spite of this, the calculated CM

D
is in good

agreement with the measurement and so is the predicted vortex shedding frequency. For the
vibrating cylinder case, the FEM with mesh remapping is capable of correctly predicting the
Strouhal response in the Re range investigated. Furthermore, it is equally capable in its
handling of the resonance and o!-resonance case over a range of cylinder mass ratio,
reduced velocity and reduced damping factor. The calculated >/D time series, fM

s
and its
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harmonics, and fM
n

are in good agreement with the measurements. Therefore, it can be
concluded that, even though the FEM gives an incorrect prediction of the mean separation
angle, it is a viable method to use for resolving #ow-induced vibration problems at these
sub-critical Re, ;

r
, M* and S

g
considered. This is in spite of the assumption of a two-

dimensional #ow and a laminar wake for problems where the wake #ow is inherently
three-dimensional and turbulent. Therefore, these results suggest that the key to the
numerical modelling of a #ow-induced vibration problem is the ability of the numerical
techniques to resolve the #uid}structure interaction, so that the induced forces and their
major frequencies are calculated correctly.
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